
How to make your software build reproducibly
Provide a verifiable path from source to binary

Lunar
lunar@debian.org

Chaos Communication Camp
2015-08-13

Lunar (Debian) Reproducible builds HOWTO CCCamp15 1 / 59

Hi! I’m Lunar. I’m very much alive and feel really
honored to be here.

Couple of words about me: I believe that humans
should be controlling machines and not the other way
around. That’s why I’m a strong supporter of free soft-
ware. I’m officialy a Debian Developper since 2007, and
involved in the Tor Project since 2009. I need to say the
work I’m presenting is also the work of many different
people involved in Debian and in other projects.

1 Introduction

2 Deterministic build system

3 Reproducible build environment

4 Distributing the build environment

5 Tips

6 Questions?

And it’s my involvement in Tor that got me interested
in the topic I am going to talk about today. So what is
the issue that we faced there?

The problem

source binarybuild

free software
freedom
to study

freedom
to run

can be verified can be used

could I get a proof?

Lunar (Debian) Reproducible builds HOWTO CCCamp15 3 / 59

When we talk about software, there are two sides of it.
Source is what some humans can read. Binary can also be
read, but only by a really tiny fraction of humanity. Bi-
nary form is what the computers need to run the software.
Transforming the source code into binary format is code
“compiling” or “building”.

The problem

source binarybuild

free software
freedom
to study

freedom
to run

can be verified can be used

could I get a proof?

Lunar (Debian) Reproducible builds HOWTO CCCamp15 3 / 59

The great thing with free software is that we have the
freedom to study that the source code is doing what it is
supposed to be doing. That it does not contain any mal-
ware, malicious code, or security bugs. Free software also
gives us the freedom to run the software in any way we
want.
The problem

source binarybuild

free software
freedom
to study

freedom
to run

can be verified can be used

could I get a proof?

Lunar (Debian) Reproducible builds HOWTO CCCamp15 3 / 59

So, we have the source code that we can verify and we
have a binary we can use. Question: when we download
software in binary form, how do we know how it was built?
Well, right now in almost every cases, your only choice is
to trust the software author, or the distribution, that the
archive with the source that has approximatively the same
name is what has been used to create the binary.

The problem

source binarybuild

free software
freedom
to study

freedom
to run

can be verified can be used

could I get a proof?

Lunar (Debian) Reproducible builds HOWTO CCCamp15 3 / 59

Wouldn’t it be much better if we could get a proof?

Why does it matter?

Available on media.ccc.de, 31c3
Lunar (Debian) Reproducible builds HOWTO CCCamp15 4 / 59

Some people could say that we need to trust the soft-

1

ware author, or the distribution, in all cases. Well, we
indeed have to trust the software author and the distribu-
tion channel. But we have processes to do that, crypto-
graphic signatures and all that jazz. But as Mike Perry
and Seth Schoen explained in greater length during a talk
last December at the 31C3, developers might be targeted
and not realize that their building environment has actu-
ally been compromised. During the talk, Seth showed a
proof-of-concept kernel exploit that would modify—with-
out touching anything on the disk—a source file while it
was being read by the compiler.

Just one example
At a CIA conference in 2012:

firstlook.org/theintercept/2015/03/10/ispy-cia-campaign-steal-apples-secrets/
Lunar (Debian) Reproducible builds HOWTO CCCamp15 5 / 59

And we are not discussing hypothetical attacks here!
A couple of months after Mike & Seth’s talk, The Inter-
cept released another document from the Snowden leaks
describing the program of an internal CIA conference
in 2012. The presentation that we see here was about
“Strawhorse” and describes an attack on XCode—the soft-
ware development environment for Mac OS X and iOS.
They had a modified version, ready to be implanted on
developer’s systems, that would create binaries being wa-
termarked, or leaking data, or containing trojans… And
this is all without the developper realizing that this is hap-
pening. So even if we trust our developpers: they might
totally be of good faith… and we would still totally get
owned.

The solution

enable anyone to reproduce
identical binary packages

from a given source

Lunar (Debian) Reproducible builds HOWTO CCCamp15 6 / 59

So what can we do about it? We need be able to get
reasonable confidence that a given binary was indeed pro-
duced using its supposed source. To achieve this, we want
to enable anyone to reproduce identical binary packages
from a given source. If we have this, and then enough peo-
ple to perform another build on different computers, on
different networks, at different times, then we can assume
that either everybody is compromised the same, or—with
better luck—that no bad stuff got added behind our backs.

The solution

We call this:

“reproducible builds”

Lunar (Debian) Reproducible builds HOWTO CCCamp15 7 / 59

We call this idea: “reproducible builds”.

It’s trendy!

Bitcoin (done)
Tor (done)
Debian (in progress)
FreeBSD (in progress)
NetBSD (in progress)
Coreboot (done)
OpenWrt (in progress)
…

Lunar (Debian) Reproducible builds HOWTO CCCamp15 8 / 59

Good news: it’s getting trendy. I became familiar with
the concept because of the work done by Mike Perry to
get Tor Browser to build reproducibly. Himself, he was
inspired by concerns in the Bitcoin community. It’s been
two years that we’ve started to work on this in Debian.
Some people have started to work on FreeBSD. Coreboot
fixed all the reproducibility problems in the past months.
OpenWrt has started to accept some patches to make this
possible. And it’s not limited to these projects. We are
seeing many people who are interested in making their
project “reproducible” or making their tools able to pro-
duce identitical binaries.

It should become the norm.

And that’s a very good thing because “reproducible
builds” should become the norm. One say the only soft-
ware that can be secure are free software because we can
perform proper audit. But this really only apply when we
can trust the binaries. As software developers, we do want
to provide a verifiable path from the source to the binaries
we distribute.

2

Multiple aspects

Deterministic build system
for those who write source code
Reproducible build environment
for those who create binaries for others
Distributing the build environment
for those who distribute binaries to the world
Performing a rebuild and checking the results
for every one of us

Lunar (Debian) Reproducible builds HOWTO CCCamp15 10 / 59

While working on this for the past two years in De-
bian, and kinda becoming a reference on the topic with-
out us realizing it, we identified that there were multiple
aspects to getting “reproducible builds”. First you need
to get the build to output the same bytes for a given ver-
sion. But others also must to be able to set up a close
enough build environment with similar enough software
to perform the build. And for them to set it up, this envi-
ronment needs to be specified somehow. Finally, you need
to think about how rebuilds are performed and how the
results are checked. I’m not going to talk about this last
point in this presentation. It’s mostly a matter of docu-
mentation because we advocate that checking the results
should be as easy as comparing if the build products are
byte for byte identical.

1 Introduction

2 Deterministic build system

3 Reproducible build environment

4 Distributing the build environment

5 Tips

6 Questions?

So first, how do we get a build system to always build
the same thing.

Deterministic build system

In a nutshell:

Stable inputs
Stable outputs
Capture as little as possible from the environment

Lunar (Debian) Reproducible builds HOWTO CCCamp15 12 / 59

In a nutshell, you need to make sure the inputs are
always the same. That the outputs are always the same.
And that as little as possible from the environment is be-
ing captured. Sounds like common sense?

Common problems
Timestamps (recording current time)
File order
(Pseudo-)randomness:

I Temporary file paths
I UUID
I Protection against complexity attacks

CPU and memory related:
I Code optimizations for current CPU class
I Recording of memory addresses

Build path
Locale and timezone settings

Lunar (Debian) Reproducible builds HOWTO CCCamp15 13 / 59

Yet, with the work we’ve done in Debian, we’ve seen
that these assumptions do not hold for a lot of the software
we build. The number one issue preventing the output to
always be the same is “timestamps”. The date and time of
the build creeps everywhere, we’ll get back to this. Other
common problems are variations in file ordering on disk,
usage of randomness, specialized code for a given CPU
class, the directory in which the build is being performed
getting embedded in binaries, or other settings like locale
or timezone affecting what gets recorded. But first, before
giving some solutions to all these problems…

To build some piece of software, we actually need to get
our hands on its source… WhyTheLuckyStiff was an amaz-
ing member of the Ruby community. If you meet someone
who doesn’t like Ruby, that’s because they never had the
chance to read _why’s Poignant Guide to Ruby. Why am
I talking about _why? Because one day, he disappeared
and took all his websites, writings and code down…

Volatile inputs can disappear
Don’t rely on the network
If you do:

I Verify content using checksums
I Have a backup

The binary distributor should provide a fallback

FreeBSD does it right
$ grep MASTER_SITES Makefile
MASTER_SITES= http://gondor.apana.org.au/~herbert/dash/files/
$ cat distinfo
SHA256 (dash-0.5.8.tar.gz) = c6db3a237747b02d20382a761397563d813b306c020ae28ce25…
SIZE (dash-0.5.8.tar.gz) = 223028
$ wget http://distcache.freebsd.org/ports-distfiles/distfiles/dash-0.5.8.tar.gz

Lunar (Debian) Reproducible builds HOWTO CCCamp15 15 / 59

Inputs from the network—even if it doesn’t seem like
it—are volatile. So don’t make your build system rely
on remote data. Or if you do, use checksums to make
sure the content has not been modified and keep backups.
Ideally, provide a fallback location with these backups. A
good example is how the FreeBSD ports work: they record
MASTER_SITES for a given piece of software, the size and
a cryptographic checksum for each files downloaded from

3

these master sites, but they also keep a copy of each files
on their mirrors. That’s the best way to handle network
inputs, but if you can avoid them, do it. Ok, now let’s
tackle some of the common issues…

Here we can see the differences between two Tar
archives. They both contain exactly the same files. But,
as you can see, not in the same order.

Stable order for inputs

Always process multiple inputs in the same order
Directory listings are not stable!

Solutions:
I List inputs explicitely

I Use sorting
I But watch out for difference between locales.

Example
tar -cf archive.tar src

Lunar (Debian) Reproducible builds HOWTO CCCamp15 17 / 59

This is an example of having a different output because
the order of inputs is not stable. When doing the basic
operation of listing a directory, there is no guarantees on
the order in which they will be returned. So if you use tar
as shown at the bottom, you don’t know in which order
files in the src directory will be written in the archive.

Stable order for inputs

Always process multiple inputs in the same order
Directory listings are not stable!
Solutions:

I List inputs explicitely

I Use sorting
I But watch out for difference between locales.

Example
tar -cf archive.tar \
src/util.c src/helper.c src/main.c

Lunar (Debian) Reproducible builds HOWTO CCCamp15 17 / 59

One solution to this is to list all inputs explicitly. The
construction here is actually pretty common for source
code already.

Stable order for inputs

Always process multiple inputs in the same order
Directory listings are not stable!
Solutions:

I List inputs explicitely
I Use sorting

I But watch out for difference between locales.

Example
find src -print0 | sort -z |
tar --null -T - --no-recursion -cf archive.tar

Lunar (Debian) Reproducible builds HOWTO CCCamp15 17 / 59

Another option is to use sorting. If you want to do it
right for tar you actually need to use find, sort and tar
in succession like shown. But there’s a catch!

Stable order for inputs

Always process multiple inputs in the same order
Directory listings are not stable!
Solutions:

I List inputs explicitely
I Use sorting
I But watch out for difference between locales.

Example
find src -print0 | LC_ALL=C sort -z |
tar --null -T - --no-recursion -cf archive.tar

Lunar (Debian) Reproducible builds HOWTO CCCamp15 17 / 59

Depending on the locale, the sort command will sort
files differently. Typically, some locales will sort all up-
percase letters together, while some other will be case-
insensitive. So don’t forget to specify the locale when us-
ing sort.

Here’s another example taken from Coreboot and it’s
the kind of issue you really don’t want to have to track
down. Mike Perry and Georg Koppen faced such an issue
with the Windows build of Tor Browser. The difference
we’re seeing here is only a couple of bytes. And these
bytes will be different with almost all builds, and with no
predictable or common patterns. That’s because they are
actually the content of whatever contains the memory at
that time.

4

Controlled value initialization
Don’t record memory by accident

Always initialize to a known value

Example
static int write_binary(FILE *out, FILE *in, struct bimg_header *hdr)
{

static uint8_t file_buf[MAX_RECORD_BYTES];
struct bimg_data_header data_hdr;
size_t n_written;

data_hdr.dest_addr = hdr->entry_addr;
…

Lunar (Debian) Reproducible builds HOWTO CCCamp15 19 / 59

And using random values from memory will not pro-
duce deterministic output. So don’t record memory by
accident. Here we can see Coreboot code that was actu-
ally producing the dump we’ve just seen.

Controlled value initialization
Don’t record memory by accident
Always initialize to a known value

Example
static int write_binary(FILE *out, FILE *in, struct bimg_header *hdr)
{

static uint8_t file_buf[MAX_RECORD_BYTES];
struct bimg_data_header data_hdr = { 0 };
size_t n_written;

data_hdr.dest_addr = hdr->entry_addr;
…

Lunar (Debian) Reproducible builds HOWTO CCCamp15 19 / 59

And as you can see the fix is trivial. So remember
to always initialize all data structures you are using. Be-
cause tracking down the source of these kind of problems
can really be a pain.

Another example. Here we see a build number embed-
ded in a German dictionary for aspell, and that gets to
be different from one build to another.

Use deterministic version information
Don’t generate a version number on each build

Instead extract information from the source:
I Version control system revision
I Hash of the source code
I Changelog entry

Example
VERSION=$(shell dpkg-parsechangelog | sed -n 's/^Version: *//p')

SCONSOPTS = $(SCONSFLAGS) VERSION=$(VERSION) \
PREFIX=$(PREFIX) PREFIX_CONF=$(SYSCONF) CHMDOCS=0 \
STRIP_CP=no \
$(if $(findstring nostripfull,$(DEB_BUILD_OPTIONS)),STRIP_W32=no,)

Lunar (Debian) Reproducible builds HOWTO CCCamp15 21 / 59

Don’t do that. We want stable output, so it’s a bad
idea to create a new version or “build number” on each
build.

Use deterministic version information
Don’t generate a version number on each build
Instead extract information from the source:

I Version control system revision
I Hash of the source code
I Changelog entry

Example
VERSION=$(shell dpkg-parsechangelog | sed -n 's/^Version: *//p')

SCONSOPTS = $(SCONSFLAGS) VERSION=$(VERSION) \
PREFIX=$(PREFIX) PREFIX_CONF=$(SYSCONF) CHMDOCS=0 \
STRIP_CP=no \
$(if $(findstring nostripfull,$(DEB_BUILD_OPTIONS)),STRIP_W32=no,)

Lunar (Debian) Reproducible builds HOWTO CCCamp15 21 / 59

Instead, be deterministic and extract an information
actually meaningful to the source that is being built. It
can be the revision number from version control system.
A hash of the source code might even be a better idea.
Good thing about Git: they are the same. Another op-
tion is to extract stuff from a “changelog”. The example
here is an extract from how it’s done for the nsis Debian
package.

That’s a dump of the nasm binary. The difference be-
tween these two builds is fairly obvious: on the left, we
have July 29, and on the right, it’s using the date of the
next day, July 30.

Don’t record the current date and time

Avoid timestamps

If you need one:
I Use date of last commit in VCS
I Extract from changelog

I Don’t forget the timezone

faketime is an option but has serious drawbacks
https://bugs.torproject.org/12240

Implement SOURCE_DATE_EPOCH

Lunar (Debian) Reproducible builds HOWTO CCCamp15 23 / 59

It’s one of the many many examples where the date and
time of the build is being recorded by the build process,
leading to different outputs. So, to sum it up: timestamps,
bad idea. The current date and time is not really a use-
ful piece of information anyway: you can always take an
old piece of software and build it today. If the date and
time of the build is meant to be an indication of the envi-
ronment in which the build was made, then, as you’ll see,
more precise ways are needed anyway to get reproducible
builds.

5

Don’t record the current date and time

Avoid timestamps
If you need one:

I Use date of last commit in VCS
I Extract from changelog

I Don’t forget the timezone
faketime is an option but has serious drawbacks
https://bugs.torproject.org/12240

Implement SOURCE_DATE_EPOCH

Lunar (Debian) Reproducible builds HOWTO CCCamp15 23 / 59

So, if you really need to have a date and time recorded,
then like for version numbers, make the date relevant to
the source code. Get the date of the latest commit to the
version control system. Or extract it from a changelog.

Don’t record the current date and time

Avoid timestamps
If you need one:

I Use date of last commit in VCS
I Extract from changelog
I Don’t forget the timezone

faketime is an option but has serious drawbacks
https://bugs.torproject.org/12240

Implement SOURCE_DATE_EPOCH

Lunar (Debian) Reproducible builds HOWTO CCCamp15 23 / 59

But in that case, don’t forget to record and use the
original timezone or do everything in UTC. Otherwise,
depending on where the build is made, you are likely to
get different results.

Don’t record the current date and time

Avoid timestamps
If you need one:

I Use date of last commit in VCS
I Extract from changelog
I Don’t forget the timezone

faketime is an option but has serious drawbacks
https://bugs.torproject.org/12240

Implement SOURCE_DATE_EPOCH

Lunar (Debian) Reproducible builds HOWTO CCCamp15 23 / 59

One tool to avoid timestamp-related issue is faketime.
faketime is a library that is loaded through the
LD_PRELOAD environment variable and that will catch calls
asking the system for the current time of day, and reply in-
stead a predefined date and time. In some cases, it works
just fine and can solve problems without requiring many
changes to a given build system. The problem is that some
tools rely on accurate times. The very common Make be-
ing one of them. Make requires accurate times because it
will do it’s best to only recompile stuff when the sources
have changed since the last time a build happened. It gets
really bad when doing parallel builds. The bug linked here
is a reproducibility issue affecting the Tor Browser where
faketime has the side effects that some objects are ac-
tually built multiple times because Make can’t properly
determine if they are too old or not, and in the end the
ordering of some object files differ. So I would recom-
mend to avoid faketime as much as possible, but handled

with care, for limited uses, it can be an option. So, what
should we do instead when some tool we use does record
the current time?

Don’t record the current date and time

Avoid timestamps
If you need one:

I Use date of last commit in VCS
I Extract from changelog
I Don’t forget the timezone

faketime is an option but has serious drawbacks
https://bugs.torproject.org/12240

Implement SOURCE_DATE_EPOCH

Lunar (Debian) Reproducible builds HOWTO CCCamp15 23 / 59

A much better idea is to implement or support
SOURCE_DATE_EPOCH.

SOURCE_DATE_EPOCH

What is it?
I Environment variable with a reference time
I Number of seconds since the Epoch (1970-01-01 00:00:00 +0000 UTC)
I If set, replace “current time of day”
I Implemented by help2man, Epydoc, Doxygen, Ghostscript (in Debian)
I Patches ready for GCC, txt2man, libxslt, Gettext…

Set SOURCE_DATE_EPOCH in your build system
Please add support in any tool writing timestamps

https://wiki.debian.org/ReproducibleBuilds/TimestampsProposal

Lunar (Debian) Reproducible builds HOWTO CCCamp15 24 / 59

SOURCE_DATE_EPOCH is a new “standard” initially
driven by Ximin Luo and Daniel Kahn Gillmor we are
trying to push as the Debian “reproducible builds” effort
. It’s a new environment variable that can be set with a
reference time that should be used throughout the build.
It’s in “epoch” format: that means it contains a number
of seconds since January 1st, 1970, midnight, UTC. The
main idea is that when SOURCE_DATE_EPOCH is set, it’s
value replace the “current time of day” whenever it would
have been used. So typically statements like “Documenta-
tion generated on…” It’s already implemented by a handful
of tool like help2man, Epydoc, Doxygen (in Git), and in
the Debian Ghostscript package. We also have submitted
patches for GCC, txt2man, libxslt, and GNU Gettext.
And patches are being prepared for more tools.

SOURCE_DATE_EPOCH

What is it?
I Environment variable with a reference time
I Number of seconds since the Epoch (1970-01-01 00:00:00 +0000 UTC)
I If set, replace “current time of day”
I Implemented by help2man, Epydoc, Doxygen, Ghostscript (in Debian)
I Patches ready for GCC, txt2man, libxslt, Gettext…

Set SOURCE_DATE_EPOCH in your build system

Please add support in any tool writing timestamps

https://wiki.debian.org/ReproducibleBuilds/TimestampsProposal

Lunar (Debian) Reproducible builds HOWTO CCCamp15 24 / 59

So an easy fix for timestamps is to set
SOURCE_DATE_EPOCH in your build system.

6

SOURCE_DATE_EPOCH

What is it?
I Environment variable with a reference time
I Number of seconds since the Epoch (1970-01-01 00:00:00 +0000 UTC)
I If set, replace “current time of day”
I Implemented by help2man, Epydoc, Doxygen, Ghostscript (in Debian)
I Patches ready for GCC, txt2man, libxslt, Gettext…

Set SOURCE_DATE_EPOCH in your build system
Please add support in any tool writing timestamps

https://wiki.debian.org/ReproducibleBuilds/TimestampsProposal

Lunar (Debian) Reproducible builds HOWTO CCCamp15 24 / 59

And if it doesn’t have the desired effects, please write
and submit patches!

But, I’m sorry to say I’m not over with timestamps.
Here you can see how the time of the build got recorded
by gzip in its headers, and by Tar, as the time of the files
in the archive.
Don’t record current time (really)

Archives keep modification times in metadata
Storing a file can record build time

Solutions:
I Store an arbitrary value

I Pre-process file modification time
I Post-process archive

Example

touch --date="2015-08-13 00:00Z" build/*

tar -cf product.tar build

Lunar (Debian) Reproducible builds HOWTO CCCamp15 26 / 59

So most archive formats will keep the file modification
times in their metadata. For some rare tools, you can sim-
ply tell them to not record medatada, like gzip with its -n
option. But for all others, that means that if your build
system creates a new file, and then stores it in an archive,
the current time will be recorded in the archive, as we just
saw. Several solutions are possible but it also depends on
the type of archive we are dealing with.

Don’t record current time (really)
Archives keep modification times in metadata
Storing a file can record build time
Solutions:

I Store an arbitrary value

I Pre-process file modification time
I Post-process archive

Example

touch --date="2015-08-13 00:00Z" build/*

tar --mtime='2015-08-13 00:00Z' -cf product.tar build

Lunar (Debian) Reproducible builds HOWTO CCCamp15 26 / 59

For Tar, we can just use a reference time for all mem-

bers of the archive.
Don’t record current time (really)

Archives keep modification times in metadata
Storing a file can record build time
Solutions:

I Store an arbitrary value
I Pre-process file modification time

I Post-process archive

Example
touch --date="2015-08-13 00:00Z" build/*
tar -cf product.tar build

Lunar (Debian) Reproducible builds HOWTO CCCamp15 26 / 59

Another solution, and this one will work for most
archive formats, is to use touch to reset the file modi-
fication times to a predetermined value.

Don’t record current time (really)
Archives keep modification times in metadata
Storing a file can record build time
Solutions:

I Store an arbitrary value
I Pre-process file modification time
I Post-process archive

Example
zip has no equivalent of --mtime
zip product.zip build
strip-nondeterminism product.zip

Lunar (Debian) Reproducible builds HOWTO CCCamp15 26 / 59

For some archive formats, there is always the option of
doing post-processing. I will come back to talk about the
strip-nondeterminism tool later.

Yet another issue. Can you understand what is hap-
pening here? There are three functions in this executable.
It’s always the same three. But sadly, they are not always
written in the same order, and the result is not byte-for-
byte identical.

Stable order for outputs

Always output lists in the same order
Typical issue: key order with hash tables
perldoc.perl.org/perlsec.html#Algorithmic-Complexity-Attacks

Sort!

Example
for module in dependencies.keys():

version = dependencies[module]
print('%s (>= %s)' % (module, version))

Lunar (Debian) Reproducible builds HOWTO CCCamp15 28 / 59

So beware of the order of outputs as it needs to be
always the same. Everytime there’s a list, there might
be ordering problems. The typical issue is related to key

7

ordering in hash tables. To prevent an attacker from con-
suming a large amount of CPU or memory by attacking
the hash function used to store data in a dictionary-like
structure (they are called hashes in Perl and in Ruby, or
dicts in Python), the function is made slightly different
on each run by using a random seed. That means that
when retrieving the keys in the dictionary, they are likely
to be in a different order on every run. The solution to
this problem is pretty simple.

Stable order for outputs

Always output lists in the same order
Typical issue: key order with hash tables
perldoc.perl.org/perlsec.html#Algorithmic-Complexity-Attacks

Sort!

Example
for module in sorted(dependencies.keys()):

version = dependencies[module]
print('%s (>= %s)' % (module, version))

Lunar (Debian) Reproducible builds HOWTO CCCamp15 28 / 59

Sort! It’s often just a single extra function call that
will make the output deterministic.

XKCD #221

Avoid (true) randomness

Randomness is not deterministic

Seed your PRNG from known value
I Use a fixed value

I Extract from source code (filename, content hash)

Example
$ gcc -flto -c utils.c
$ nm -a utils.o | grep inline
0000000000000000 n .gnu.lto_.inline.381a277a0b6d2a35

Lunar (Debian) Reproducible builds HOWTO CCCamp15 29 / 59

They are more randomness related issues. Unless it’s
being implemented as suggested by XKCD, any usage of
random data by the build process will make the output un-
reproducible. It’s what GCC actually does when “Link-
Time Optimization” is enabled. The good news is that
computers are very bad at randomness, and what we use
are “pseudo-random number generators”.

XKCD #221

Avoid (true) randomness

Randomness is not deterministic
Seed your PRNG from known value

I Use a fixed value

I Extract from source code (filename, content hash)

Example
$ gcc -flto -c -frandom-seed=0 utils.c
$ nm -a utils.o | grep inline
0000000000000000 n .gnu.lto_.inline.0

Lunar (Debian) Reproducible builds HOWTO CCCamp15 29 / 59

These mathematical functions will take an initial value
and from there derive a very very long sequence of num-
bers which don’t look like that have anything in common.
So a solution to this problem is to use a predefined value
as the seed.

XKCD #221

Avoid (true) randomness

Randomness is not deterministic
Seed your PRNG from known value

I Use a fixed value
I Extract from source code (filename, content hash)

Example
$ gcc -flto -c -frandom-seed=utils.o utils.c
$ nm -a utils.o | grep inline
0000000000000000 n .gnu.lto_.inline.a108e942

Lunar (Debian) Reproducible builds HOWTO CCCamp15 29 / 59

Sometimes you still need to prevent collisions, and so
it might be better to seed the value with a value that can
change from one file to another, or from one version of
the software to the next. Deriving a filename or a content
hash is an obvious answer for these cases.
Define environment variable affecting outputs

Some environment variables will affect software outputs. E.g:
I LC_CTIME for time strings
I LC_CTYPE for text encoding
I TZ for times

Set them to a controlled value
Please don’t force the language

Lunar (Debian) Reproducible builds HOWTO CCCamp15 30 / 59

Another thing you might want to look for is how en-
vironment variables might affect outputs. The date com-
mand on Unix systems might return different results de-
pending on the locale. Files might be written using differ-
ent character encodings. Various piece of code—hint Get-
text—will be affected by the current timezone.

Define environment variable affecting outputs

Some environment variables will affect software outputs. E.g:
I LC_CTIME for time strings
I LC_CTYPE for text encoding
I TZ for times

Set them to a controlled value

Please don’t force the language

Lunar (Debian) Reproducible builds HOWTO CCCamp15 30 / 59

If you identify that you are using one of these tools,
then set these variables to avoid surprises. One pledge
though…

Define environment variable affecting outputs

Some environment variables will affect software outputs. E.g:
I LC_CTIME for time strings
I LC_CTYPE for text encoding
I TZ for times

Set them to a controlled value
Please don’t force the language

Lunar (Debian) Reproducible builds HOWTO CCCamp15 30 / 59

Please don’t blindly overwrite the system language if

8

you can avoid it. I believe that people should be able
to interact with computers in the language they prefer,
and they might prefer to get compiler errors in their first
language.

Stop recording build system information

Don’t record information about the build system, like:
I date and time of the build
I hostname
I path
I network configuration
I CPU
I environment variables
I …

If you really want to record them, do it outside the binaries

Lunar (Debian) Reproducible builds HOWTO CCCamp15 31 / 59

As a general recommendation, try not to record any
information about the build and the build system. Date
and time as we already said, but it also goes for the system
hostname or its CPU.

Stop recording build system information

Don’t record information about the build system, like:
I date and time of the build
I hostname
I path
I network configuration
I CPU
I environment variables
I …

If you really want to record them, do it outside the binaries

Lunar (Debian) Reproducible builds HOWTO CCCamp15 31 / 59

If you really want to record them, it’s best to do it
outside of the binaries that will be distributed to users
so actual code can be compared more easily. A build log
is a perfectly reasonable location to record these kind of
information. The version string, not so much. Knowing
in which environment a software has been built is far less
interesting when you have “reproducible builds”.

1 Introduction

2 Deterministic build system

3 Reproducible build environment

4 Distributing the build environment

5 Tips

6 Questions?

That’s because we are going to use a well-defined en-
vironment to perform our builds, as we want users to be
able to reproduce it… so they can actually reproduce the
build.

What’s in a build environment?

At least: build tools and their specific versions

Up to you, depending on the build system:
I build architecture
I operating system
I build path
I build date and time
I …

Lunar (Debian) Reproducible builds HOWTO CCCamp15 33 / 59

So what do we call a build environment? Well, at the
very least, it’s the tools that are needed to build the soft-
ware. And in most cases, the actual version that has been
used. Compilers for example are being improved all the
time with new optimizations. A piece of software built
with a newer version of a compiler is quite likely be faster
than one built with an older version of the same compiler.
That’s a good thing, but that means different versions of
the same compiler is likely to produce different binaries.

What’s in a build environment?

At least: build tools and their specific versions
Up to you, depending on the build system:

I build architecture
I operating system
I build path
I build date and time
I …

Lunar (Debian) Reproducible builds HOWTO CCCamp15 33 / 59

And then, you can decide that other aspects of the en-
vironment should be reproduced by users if they want to
build your software. If you don’t support cross-compiling,
mandating a given build architecture is probably a sane
thing to do. Or declaring that a given binary can only be
created by using FreeBSD. One thing we currently decided
for Debian to avoid some pain is to mandate a particu-
lar directory where the build should be performed. This
avoids problems with paths being recorded in debug sym-
bols, for which we don’t have good post-processing tools at
the moment. If you use things like SOURCE_DATE_EPOCH or
faketime, you can also declare that a build must be per-
formed using a definite reference time. And basically, it’s
quite up to you, but you must identify what’s in there so
users have a chance to produce the same output as the one
you are distributing. Once identified you must give a way
to reproduce the same environment on their own system.

Build from source

Build tools affecting the output from source
Record version / tag / git commit
Approach used by Coreboot, OpenWrt, Tor Browser

Lunar (Debian) Reproducible builds HOWTO CCCamp15 34 / 59

9

So one way to have users reproduce the tools used to
perform the build is simply to have them start by build-
ing the right version of these tools from source. That’s the
approach used by Coreboot, OpenWrt and partially Tor
Browser.

Reference distribution

Use a stable distribution (e.g. Debian, CentOS)
Record package version
Hope the old package will stay available / record
Approach used by Bitcoin, Tor Browser

Lunar (Debian) Reproducible builds HOWTO CCCamp15 35 / 59

Another approach, used by Bitcoin and other parts of
the Tor Browser build process, is to use a specific version of
an integrated operating system. Usually with GNU/Linux
using a stable distribution like Debian or CentOS. It needs
to stay available for long and to have the least amount of
update possible. Better record exact package version, and
hope these versions can be later reinstalled.

Virtual machines / containers

Using a VM saves some problems:
I Same user
I Same hostname
I Same network configuration
I Same CPU
I …

Introduce new things that need to be trusted

Lunar (Debian) Reproducible builds HOWTO CCCamp15 36 / 59

Some things can be quite simplified by using virtual
machines or containers. With a virtual machine you can
easily perform the build in a more controlled environment.
Always using the same user, the same hostname, the same
network configuration, you name it. The downside is that
it can introduce a lot of software that has be trusted some-
how. For example, it’s currently not possible to install
Debian in a reproducible manner. This makes it harder to
compare different installations. We’ve done some prelim-
inary work, but it’s only been about identifying issues so
far.

Proprietary operating systems

Cross-compiling to the rescue!
For Windows:

I mingw-w64: build Windows binaries on *nix
I NSIS (Nullsoft Scriptable Install System)

For Mac OS X:
I Used to be quite complicated

https://github.com/bitcoin/bitcoin/blob/master/doc/README_osx.txt
I Now pretty straightforward with crosstool-ng

https://bugs.torproject.org/9711#comment:73
I Need a non-redistributable SDK extracted from XCode
I .dmg are a bit tricky

Lunar (Debian) Reproducible builds HOWTO CCCamp15 37 / 59

And speaking about trusting operating systems, how
can we handle the proprietary ones? It’s hard to assess
they have not been tampered with. So let’s just avoid

that path. We actually have free software tools that can
build perfectly fine software for Windows and Mac OS X.
This is already how it’s done for Bitcoin and Tor Browser,
so thanks to them for researching this hairy topic. For
Windows, ming-w64 and the Nullsoft Scriptable Install
System are both available in Debian. This is actually
how we are building the application that can launch the
debian-installer on Windows. For Mac OS X, it used
to be quite hackish, but it’s getting better thanks to the
work done by Ray Donnelly. You will need to use a non-
redistributable part, although it’s provided by Apple after
free registration, from XCode to build the toochain. Soft-
ware from Mac OS X is often distributed as disk images
which can be created under GNU/Linux, but it kinda re-
quires 3 different tools at the moment. Hopefully if more
people start doing this, the whole process is likely to get
improved in the future.

1 Introduction

2 Deterministic build system

3 Reproducible build environment

4 Distributing the build environment

5 Tips

6 Questions?

So, great! We now have defined what’s our canonical
build environment. How do we distribute it to our users
alongside our binaries and source code?

Good ol’Makefile

Download known toolchain archives
Compare reference checksums
Build and setup
Coreboot: make crossgcc

Lunar (Debian) Reproducible builds HOWTO CCCamp15 39 / 59

If the environment is only about build tools, maybe the
easiest way is just to add an extra target to your Makefile.
For example, building Coreboot almost mandate to first
run make crossgcc. This will download known archives
for GCC, binutils and others, compare the archives with
reference checksums, and proceed to build them. And it’s
these tools that are going to be used by the rest of the
build process.

10

Check-in everything

Check-in all the toolchain source code in VCS
Approach used for the base system in *BSD, and Google
Make sure everything is checked in (use sandbox on Linux)
Recently open-sourced: Bazel
http://bazel.io/
Can be hard to ask everyone to download everything all the time

Lunar (Debian) Reproducible builds HOWTO CCCamp15 40 / 59

A more radical extension to the former approach is to
actually check everything in your version control system.
Everything as in the source of every single tool. That’s
how it’s working when you are “building the world” on
BSD-like systems. That’s also how Google is doing it
internally. To make absolutely sure that everything is
checked-in, you can even use “sandboxing” mechanisms
to avoid the risk of running a tool that has not been built
from source. Google recently started open-sourcing the
tool they use internally to drive such large scale builds
under the name Bazel. So despite its syntax that I per-
sonally find hard to read, it’s probably worth checking out.
But if you are not working in a corporate environment, or
on a fully integrated operating system, it might be hard to
push. You don’t really want to ask everyone to download
and build every possible version of GCC every time they
would like to build a piece of code.

Ship the toolchain as a build product

Make the toolchain as a build product
OpenWrt:
http://wiki.openwrt.org/doc/howto/obtain.firmware.sdk

Example
$ wget https://downloads.openwrt.org/…/14.07/…OpenWrt-SDK-atheros-….tar.bz2
$ svn export svn://…/branches/packages_14.07/utils/xz package/xz
$ make package/xz/compile

Lunar (Debian) Reproducible builds HOWTO CCCamp15 41 / 59

As a middle ground, OpenWrt offers an “SDK”
that can be downloaded alongside their system images
which contains everything that is needed to build—or re-
build—extra packages. To close the loop, as the SDK
becomes another build product, it has to be possible to
build it reproducibly.

Gitian
Used by Bitcoin, Tor Browser
Drives LXC or KVM
“Descriptors” describing the build using:

I Base distribution
I Packages
I Git remotes
I Other input files
I Build script

Resources
https://gitian.org/
https://github.com/bitcoin/bitcoin/blob/master/doc/gitian-building.md
https://github.com/bitcoin/bitcoin/blob/master/contrib/gitian-descriptors/

Lunar (Debian) Reproducible builds HOWTO CCCamp15 42 / 59

Gitian is the tool used by Bitcoin and the Tor Browser.
It either drives a Linux container using LXC, or a vir-
tual machine using KVM. Gitian takes “descriptors” as

input which tells which base GNU/Linux distribution to
use, which packages to install, which Git remotes must
be fetched, any other input files, and a build script to be
run with all of that. As explained earlier, using a virtual
machine helps to get rid of several extra variations that
can happen from one system to the next. But this is more
complicated to setup for users.

Docker
Provide a way to describe specialized Linux container images
Build in a controlled environment
Docker images can be addressed with a hash of their content
Bazel has support to build Docker images reproducibly

https://github.com/tianon/gosu/blob/master/Dockerfile
FROM golang:1.4-cross
[…]
disable CGO for ALL THE THINGS (to help ensure no libc)
ENV CGO_ENABLED 0
COPY *.go /go/src/github.com/tianon/gosu/
WORKDIR /go/src/github.com/tianon/gosu
RUN GOARCH=amd64 go build -v -ldflags -d -o /go/bin/gosu-amd64

Lunar (Debian) Reproducible builds HOWTO CCCamp15 43 / 59

Making containers easy to setup and use is exactly the
problem that Docker is trying to solve. Dockerfiles are
used to describe how to create a container, and how appli-
cations can be run in there. This specific example is how
a tool often used in Docker images, gosu is built. Using
the reference container made available to build Go appli-
cations, it then installs the necessary dependencies, and
calls the Go compiler in that environment which should
be pretty much the same all the time. To be sure that
the base compiler is the same, one could use the fact that
Docker images can actually be addressed by a hash of their
content. Another option is to build the Docker image it-
self in a reproducible manner, and from what I read in the
documentation, Bazel—mentioned earlier— is able to do
this.

Vagrant

Drive VirtualBox using Ruby and other scripts
Build in a controlled environment
Also works under OS X and Windows

https://www.vagrantup.com/

Lunar (Debian) Reproducible builds HOWTO CCCamp15 44 / 59

Vagrant is another tool, written in Ruby, that can drive
virtual machines with VirtualBox. It can also be used to
get a controlled build environment. The upside of Vagrant
and VirtualBox is that they works on Mac OS X and Win-
dows, and so this might help more users to actually check
that a build has not been tempered with.

11

Debian .buildinfo

Tie in the same file:
I Sources
I Generated binaries
I Packages used to build (with specific version)

Can be later processed to reinstall environment
All versions are available from snapshot.debian.org

Lunar (Debian) Reproducible builds HOWTO CCCamp15 45 / 59

For Debian, we decided for another path. We defined
a new control format, called .buildinfo where we list
the sources, the generated binaries, and every packages
that were installed in the system when these binaries were
built. It means that we can easily reproduce the build en-
vironment by reinstalling each package with the specific
version that we had recorded. We can do that because
Debian has a service called “snapshot” which records ev-
ery binary package ever uploaded to the Debian archive,
so older versions of a given package stay available even
when they have been superseded by a later one.

Example .buildinfo
Format: 1.9
Build-Architecture: amd64
Source: txtorcon
Binary: python-txtorcon
Architecture: all
Version: 0.11.0-1
Build-Path: /usr/src/debian/txtorcon-0.11.0-1
Checksums-Sha256:
a26549d9…7b 125910 python-txtorcon_0.11.0-1_all.deb
28f6bcbe…69 2039 txtorcon_0.11.0-1.dsc

Build-Environment:
base-files (= 8),
base-passwd (= 3.5.37),
bash (= 4.3-11+b1),
…

Lunar (Debian) Reproducible builds HOWTO CCCamp15 46 / 59

Here’s an example of what a .buildinfo looks like.
So you can see the build architecture, checksums of
source—that’s the .dsc— and the binary packages, the
build path, and all the packages involved. Hopefully they
will be soon available on Debian mirrors and users should
then be able to simply call a script to re-do the environ-
ment and then the build.

1 Introduction

2 Deterministic build system

3 Reproducible build environment

4 Distributing the build environment

5 Tips

6 Questions?

It’s been two years we’ve been working on this in De-
bian. We’re not totally there yet, but here’s still some tips
to share.

Testing for variations

Build a first time
Save the result
Perform change(s) to the environment
Build a second time
Compare results

Lunar (Debian) Reproducible builds HOWTO CCCamp15 48 / 59

If users are the ones that detects that changes in the
environment affect the build, it’s going to raise a lot of
false alarms. So better perform tests ahead. The basic
idea we are currently using in Debian is that we build a
first time, keep the result aside, change various stuff in the
environment, perform a second build, and then compare
the results.

reproducible.debian.net
Continuous test system driven by Jenkins
Bad-ass hardware sponsored by ProfitBricks
Tests about 1300 Debian source packages per day on average
Results are visible on a website
Other projects: Coreboot, OpenWrt, yours?

Lunar (Debian) Reproducible builds HOWTO CCCamp15 49 / 59

Based on this, Holger Levsen, now helped by Mattia
Rizzolo, setup a continuous test system driven by Jenkins.
Thanks to ProfitBricks for the crazy bad ass hardware as
it’s able to perform 1300 tests—that means building 1300
packages twice—every day on average. The results are
then put in a database and browsable on the web. The
system has been recently extended to other projects and
we are currently performing tests for Coreboot and Open-
Wrt. Work has also started to test FreeBSD and NetBSD…
Holger is at the camp, so please talk to him if you want
to ask about your projects!

Variations on reproducible.debian.net
variation first build second build
hostname jenkins i-capture-the-hostname
domainname debian.net i-capture-the-domainname
env TZ GMT+12 GMT-14
env LANG en_GB.UTF-8 fr_CH.UTF-8
env LC_ALL not set fr_CH.UTF-8
env USER pbuilder1 pbuilder2
uid 1111 2222
gid 1111 2222
UTS namespace shared with the host modified using /usr/bin/unshare --uts
kernel version Linux 3.16.0-4-amd64 Linux 2.6.56-4-amd64
umask 0022 0002
CPU type same for both builds (work in progress)
year, month, date same for both builds (work in progress)
hour, minute hour is usually the same… usually, the minute differs… (work in progress)
everything else is likely the same…

Lunar (Debian) Reproducible builds HOWTO CCCamp15 50 / 59

To give you an overview, these are all the variations
we are currently performing between the first build and
the second one. So hostname, domain name, timezone
(see how we use timezones that are more than 24 hours
apart so that we get a different day), the language, gen-
eral locale settings, username, user id, group id, network
namespace, kernel version, umask… and pretty soon we’ll
have the second run on a different machine that will have

12

a different number of cores, a different date, and maybe
a different filesystem. Hopefully, we’ll then be covering it
all, but time will tell.

I didn’t want to make this talk too much about the
Debian project, but just to give you a quick view on how
we are doing. Some crucial patches are still experimental
and not in the main Debian archive. But with our experi-
mental toolchain, our tests are now positive for more than
80

20
14

-1
0-

14
20

14
-1

0-
24

20
14

-1
1-

03
20

14
-1

1-
13

20
14

-1
1-

23
20

14
-1

2-
03

20
14

-1
2-

13
20

14
-1

2-
23

20
15

-0
1-

02
20

15
-0

1-
12

20
15

-0
1-

22
20

15
-0

2-
01

20
15

-0
2-

11
20

15
-0

2-
21

20
15

-0
3-

03
20

15
-0

3-
13

20
15

-0
3-

23
20

15
-0

4-
02

20
15

-0
4-

12
20

15
-0

4-
22

20
15

-0
5-

02
20

15
-0

5-
12

20
15

-0
5-

22
20

15
-0

6-
01

20
15

-0
6-

11
20

15
-0

6-
21

20
15

-0
7-

01
20

15
-0

7-
11

20
15

-0
7-

21
20

15
-0

7-
31

0

100

200

300

400

500

600

700

800

Done

Open

And here might be a more accurate view of the progress
we are making every day as Debian maintainers integrate
the patches that we are submitting.

Debugging problems: diffoscope
Examines differences in depth
Outputs HTML or plain text showing the differences
Recursively unpacks archives
Seeks human readability:

I uncompresses PDF
I disassembles binaries
I unpacks Gettext files
I … easy to extend to new file formats

Falls back to binary comparison

http://diffoscope.org/
(formely known as debbindiff)

Lunar (Debian) Reproducible builds HOWTO CCCamp15 53 / 59

That’s also because we came up with a tool that helped
us understand issues. Comparing two different compressed
archives is not going to help you understand much of why
they are different. It’s every files in these archives that
need to be compared. So that’s why we came up with
“diffoscope”. It will recursively unpack archives, and for
binary files, try to get a human readable representation
before comparing them. It will fallback to comparing hex-
dumps if the bytes are different but no differences show
up in the human readable representation. “diffoscope” is
designed to be extensible and has now grown way beyond
just being a tool for Debian packages. It also supports
RPM, ISO images, or squashfs filesystems.

diffoscope example (HTML output)

Lunar (Debian) Reproducible builds HOWTO CCCamp15 54 / 59

“diffoscope” output can be visible in a web browser.

diffoscope example (text output)

Lunar (Debian) Reproducible builds HOWTO CCCamp15 55 / 59

Or in plain text which it might be easier to post-process
or share.
strip-nondeterminism

Normalizes various file formats
Currently handles:

I ar archives (.a)
I gzip
I Java jar
I Javadoc HTML
I Maven pom.properties
I PNG
I ZIP archives
I … extensible to new formats

Written in Perl (like dpkg-dev)

git://git.debian.org/reproducible/strip-nondeterminism.git

Lunar (Debian) Reproducible builds HOWTO CCCamp15 56 / 59

Another tool we came up in Debian is
strip-nondeterminism, originaly written by Andrew
Ayer. It is meant to be a central place to perform post-
processing on various file formats to remove bits of non-
determinism. It already handles several file formats and
should be easily extensible to more. It is written in Perl,
like the other tools you need to create Debian packages,
to avoid adding an extra build dependency.

Resources

Reproducible Builds HOWTO (work in progress)
https://reproducible.debian.net/howto/

Debian “Reproducible Builds” wiki
https://wiki.debian.org/ReproducibleBuilds
Diverse Double-Compilation
http://www.dwheeler.com/trusting-trust/

Lunar (Debian) Reproducible builds HOWTO CCCamp15 57 / 59

I’m ending with a couple more resources. We have
started to write an HOWTO which should contain more
or less what I’ve been telling you for the past forty min-
utes. Contributions from all projects are highly welcome.

13

As I said, “reproducible builds” should become the norm,
and it would be great to have reference documentation
that can be widely shared and used.

Resources

Reproducible Builds HOWTO (work in progress)
https://reproducible.debian.net/howto/
Debian “Reproducible Builds” wiki
https://wiki.debian.org/ReproducibleBuilds

Diverse Double-Compilation
http://www.dwheeler.com/trusting-trust/

Lunar (Debian) Reproducible builds HOWTO CCCamp15 57 / 59

We’ve been collecting a lot of information about repro-
ducibility issues on the Debian wiki. Some are pretty spe-
cific to Debian, but there’s a lot to learn. We’ve also been
collecting rationales, media mentions, and other goodies.

Resources

Reproducible Builds HOWTO (work in progress)
https://reproducible.debian.net/howto/
Debian “Reproducible Builds” wiki
https://wiki.debian.org/ReproducibleBuilds
Diverse Double-Compilation
http://www.dwheeler.com/trusting-trust/

Lunar (Debian) Reproducible builds HOWTO CCCamp15 57 / 59

Last but not least, I’d like to mention David A.
Wheeler’s work on Diverse Double-Compilation. Often
when I explain the idea of “reproducible builds”, some-
one comes up asking “but how can you be sure that your
compiler has not been backdoored so that the next time
it builds a compiler it will not insert another backdoor?”
This is also known as the “trusting trust” attack from
Ken Thompson that was mentioned in the Snowden doc-

ument. So David refined (and also did a formal proof)
that we can answer this question using a process that is
called Diverse Double-Compilation. I’ll try to sum it up
quickly: you need two compilers, with one that you some-
how trust; then you build the compiler under test twice,
once with each compiler, and then you use the compilers
that you just built to build the compiler under test again.
If the output is the same, then no backdoors. But for this
scheme to work, you need to be able to compare that both
build outputs are the same. And that’s exactly what we
are enabling when having reproducible builds.

1 Introduction

2 Deterministic build system

3 Reproducible build environment

4 Distributing the build environment

5 Tips

6 Questions?

I’m done. I sincerely hope that this short lecture will
make you want to provide reproducible builds. As I said, I
really think we all need this to become the norm. Thanks
for listening. And I now will be happy to take questions.

Thanks!
Debian “Reproducible Builds” team
(you are just so awesome!)
Mike Perry, Georg Koppen, David A. Wheeler
Linux Foundation and the Core Infrastructure Initiative

lunar@debian.org 0603 CCFD 9186 5C17 E88D
4C79 8382 C95C 2902 3DF9

clothes: Elhonna Sombrefeuille — hair: igor

Lunar (Debian) Reproducible builds HOWTO CCCamp15 59 / 59

14

