
Reproducible Builds
An independently-verifiable path from source code to software

Frédéric Pierret

Oct. 7th 2022

1 of 73

Frédéric Pierret (fepitre)

• PhD in Applied Mathematics,
• Modeling of dynamical systems,
• Desiging build systems.

• github.com/fepitre
• frederic@invisiblethingslab.com
• frederic.pierret@qubes-os.org

2 of 73

What?

3 of 73

What are reproducible builds?

Reproducible Builds
enable anyone to reproduce
identical binary packages

from a given source

4 of 73

What?

source binarybuild

5 of 73

What?

source binarybuild

free software
freedom
to study

freedom
to run

6 of 73

What?

source binarybuild

can be verified can be used

7 of 73

What?

source binarybuild

can be verified can be used

prove it
to me!

8 of 73

Why?

9 of 73

Why?

Reproducible builds allow for independent verifications that a binary
matches what the source intended to produce.

. . . and other nice things.

10 of 73

But I’m the developer!

“I know what’s in the binary because I compiled it myself!”

“I’m an upstanding, careful, and responsible individual!”

“Why should I have to worry about hypothetical risks about the
contents of my binaries?”

11 of 73

But the build machines are secure

• How can you be sure?

12 of 73

But the distribution packagers released it!

• What’s in between build artifacts and signed-build artifacts?

13 of 73

Unpleasant thoughts

• We think of software development as a fundamentally benign
activity,
◦ “I’m not that interesting.”

• Users can be targeted through developers,
• Known successful attacks against infrastructure used by Linux
(2003), FreeBSD (2013), PHP (2021) and some undisclosed.

14 of 73

Seriously. . .

During a CIA conference in 20121:

1https://firstlook.org/theintercept/2015/03/10/ispy-cia-campaign-steal-apples-
secrets/15 of 73

And yes. . .

• SolarWinds2 was exactly what would be prevented by
reproducible builds!

• The compromission was on build servers!

2https://www.sans.org/blog/what-you-need-to-know-about-the-solarwinds-
supply-chain-attack/16 of 73

How small can a backdoor be?

OpenSSH 3.0.2 (CVE-2002-0083) – exploitable security bug (privilege
escalation: user can get root)

{
Channel *c;

- if (id < 0 || id > channels_alloc) {
+ if (id < 0 || id >= channels_alloc) {

log("channel_lookup: %d: bad id", id);
return;

}

17 of 73

Result of fixing the bug (asm)

cmpl $0x0,0x8(%ebp) cmpl $0x0,0x8(%ebp)
js 16 js 16
mov 0x4,%eax mov 0x4,%eax
cmp %eax,0x8(%ebp) cmp %eax,0x8(%ebp)
jle 30 jl 30
mov 0x8(%ebp),%eax mov 0x8(%ebp),%eax
mov %eax,0x4(%esp) mov %eax,0x4(%esp)
movl $0x4c,(%esp) movl $0x4c,(%esp)
call 25 call 25

18 of 73

Result of fixing the bug (hex)

Vulnerable Fixed
55 89 e5 83 ec
28 83 7d 08 00
78 0a a1 04 00
00 00 39 45 08
7e 1a 8b 45 08
89 44 24 04 c7
04 24 4c 00 00
00 e8 fc ff ff
ff b8 00 00 00
00 eb 35

55 89 e5 83 ec
28 83 7d 08 00
78 0a a1 04 00
00 00 39 45 08
7c 1a 8b 45 08
89 44 24 04 c7
04 24 4c 00 00
00 e8 fc ff ff
ff b8 00 00 00
00 eb 35

19 of 73

Resulting difference in the binary

What’s the difference between if (a > b)
and if (a >= b) in x86 assembly?

assembly: JLE JL
opcode: 0x7E 0x7C
binary: 01111110 01111100

A single bit!
Other corresponding opcode pairs also differ by just a single bit
(JGE=0x7D, JG=0x7F)

20 of 73

Do not blame developers (all the times)

• Malicious modifications to binaries could result in irrevocable
unwanted actions,

• Individual developers could be blamed for such modifications,
• Reproducible builds therefore protect developers

21 of 73

Nothing new though

From: Martin Uecker <muecker@gmx.de>
Cc: debian-devel@lists.debian.org
Date: Sun, 23 Sep 2007 23:32:59 +0200

I think it would be really cool if the Debian policy required that
packages could be rebuild bit-identical from source. At the moment, it
is impossible to independly verify the integricity of binary packages.

https://lists.debian.org/debian-devel/2007/09/msg00746.html

22 of 73

https://lists.debian.org/debian-devel/2007/09/msg00746.html

Wouldn’t it be cool?

• Debian is the largest collection of free software
• More than 25,000 source packages
• “Our priorities are our users and free software”

23 of 73

How?

24 of 73

How?

• Record the build environment
• Reproduce the build environment
• Eliminate unneeded variations

25 of 73

How:
Record the build environment

26 of 73

*.buildinfo

New control file *.buildinfo which records:
• Versions of build dependencies

◦ . . . and their dependencies
• Checksum of the source package.
• Checksums of the binary packages.

27 of 73

Example *.buildinfo

Format: 1.0
Source: apt
Binary: apt apt-dbgsym apt-utils apt-utils-dbgsym libapt-pkg-dev libapt-pkg6.0 libapt-pkg6.0-dbgsym
Architecture: amd64
Version: 2.2.4
Build-Origin: Debian
Build-Architecture: amd64
Build-Date: Thu, 10 Jun 2021 09:12:36 +0000
Build-Path: /build/apt-oBIw5E/apt-2.2.4
Installed-Build-Depends:
autoconf (= 2.69-14),
automake (= 1:1.16.3-2),
autopoint (= 0.21-4),
autotools-dev (= 20180224.1+nmu1),
base-files (= 11.1),
base-passwd (= 3.5.50),

...

28 of 73

How:
Eliminate unneeded variations

29 of 73

Eliminate unneeded variations

Make the build process deterministic:

Same input
=

Same output

30 of 73

Dealing with variations: two approaches

• If a build differs because of X, you have two ways of dealing with it:
◦ either make X always the same,
◦ or make the build independent of X.

• Good example is build path:
◦ Debian tries to not embed it,
◦ Fedora or OpenSUSE always builds with the same path (e.g. Mock).

31 of 73

Investigating packages3

• diffoscope
◦ figure out what makes files or directories different.
◦ recursively unpack archives of many kinds and transform various binary

formats into more human-readable forms for comparison.
◦ It can compare two tarballs, ISO images, or PDFs just as easily.

• reprotest
◦ builds the same source code in different environments,
◦ checks the binaries produced by the builds,
◦ see if changing the environment, without changing the source code,

changed the generated binaries.

3https://reproducible-builds.org/tools/32 of 73

How:
Reproduce the build

33 of 73

Reproduce the build for Debian aka rebuild

• snapshot.notset.fr4

◦ A working replacement of snapshot.debian.org,
◦ History of Debian repositories from 2017 to now,
◦ amd64, all and sources (upcoming arm64)

• debrebuild5

◦ Find the right archive snapshot,
◦ Install packages listed in the *.buildinfo file,
◦ Do the rebuild.

4https://github.com/fepitre/debian-snapshot
5https://github.com/fepitre/debrebuild34 of 73

beta.tests.reproducible-builds.org

35 of 73

beta.tests.reproducible-builds.org

36 of 73

in-toto format6

{
"signatures": [
{
"keyid": "8deb0bef1d99feb8b9a90fb192ef6d6141641e5c",
"other_headers": "04000108001d1621048deb0bef1d99feb8b9a90fb192ef6d6141641e5c05026157bb29",
"signature": "1f0b097baa2b82105ba4054966fa84f35eada6088b218e5856ae8bd7fef04eb37ab2e2c0e8f5d9d7b238704d1108af2948c735f2620f91f55252bf52f15a9acc7841ccb9249be76c7eab6391f6a654ed7bad58c915e4cafb9342e3ca23cce64b8dd19fa67bfe5da46146e812a1fe11668dc36fffbed589d29d46f659973bea74ac79253ddc2613cdcce26fec41ad8b5040e6cc79662d7dd5ac238b8fb24f50336700422cce2801703cb172de04523666d281a8ff3b45b4f44efd2f634f86426a82121d74f17bc3761d0a511da4b2dc8e9abc2fb30dbe136f1de7890393958d54bac711512f966e591dc30625b92a7fb77e9040d4bb90d9e17f24d514a7330d796cd92ce0d2a0fc7eb8e2b1279ae5d5a16842c3876c750887e9d25fe73e26ba053469c73cabb189c2e9392425190b1119cbd71ba4c08527cfaf63208b72de7268039830cacc91eaa7a1505e6b4987dcfd80d6364e3f8f113cbb0b332c5a00c206bf14da588b3fe28da05ea707bfc26a86ba7cd2bddcf28130e768054ccb6079156da13772759689b304823a3f0c038fd05f582c0f49806ee9ab60d1eb33e086532d61af9ab7e078176313dca7427a9ebe06e6e70958bc6b9aab444eb202597ba617febe1cc35639805a092d5713b5bcea9a12dd2801a57595b8409ca3cc5e255b1aae7a63b76c0fdd316dad728b9a748ca7f75adb2f5c9d0872b3043ea11fe271"

}
],
"signed": {
"name": "rebuild",
"products": {
"apt_2.2.4_amd64.deb": {
"sha256": "75f07c4965ff0813f26623a1164e162538f5e94defba6961347527ed71bc4f3d"

},
(...)

}
}

}

6https://in-toto.io/37 of 73

beta.tests.reproducible-builds.org

root@debian-11:~# apt-get install tzdata
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following packages will be upgraded:

tzdata
1 upgraded, 0 newly installed, 0 to remove and 842 not upgraded.
Need to get 284 kB of archives.
After this operation, 4,096 B of additional disk space will be used.
Get:1 intoto://deb.debian.org/debian bullseye/main amd64 tzdata all 2021a-1 [284 kB]
(...)
In-toto verification for ’/var/cache/apt/archives/partial/tzdata_2021a-1_all.deb’ passed! :)
Fetched 284 kB in 15s (19.3 kB/s)
Reading changelogs... Done
(...)

38 of 73

Test
(and test again)

39 of 73

tests.reproducible-builds.org

• Continuous tests,
• Archlinux, coreboot, Debian, FreeBSD, NetBSD, OpenWrt, GNU
Guix, NixOS, openSUSE, Qubes OS, Yocto Project.

40 of 73

https://tests.reproducible-builds.org

Purpose:
• Build the package,
• Rebuild the package,
• Compare the results,
• This is not rebuild.

41 of 73

https://tests.reproducible-builds.org

The second build is different in:
• time,
• file ordering,
• CPU ordering and availability,
• hostname,
• user & group,
• locale,
• kernel,
• etc.

42 of 73

Findings

43 of 73

Identified issues

• Timestamps (recording current time),
• File order,
• (Pseudo-)randomness:

◦ Temporary file paths,
◦ UUID,
◦ Protection against complexity attacks.

44 of 73

Identified issues (cont.)

• CPU and memory related:
◦ Code optimizations for current CPU class,
◦ Recording of memory addresses,

• Build path,
• Others, e.g. locale settings.

45 of 73

Identified issues (cont.)

Examples
Timestamps added by build systems

46 of 73

Timestamps in static libraries

47 of 73

Timestamps by a template engine

48 of 73

Identified issues (cont.)

Examples
Archives

49 of 73

Timestamps in gzip headers

50 of 73

Timestamps in ZIP archives

51 of 73

Timestamps in tarballs

52 of 73

Users and groups in tarballs

53 of 73

Identified issues (cont.)

Examples
Timestamps in documentation

54 of 73

Timestamps written by Doxygen

55 of 73

Timestamps in TeX output (.dvi)

56 of 73

Identified issues (cont.)

Examples
“Compiled at/on/by”

57 of 73

Build time via C preprocessor macros

58 of 73

Build time recorded via Makefile

59 of 73

Hostname recorded via ./configure

60 of 73

m4 macros for autoconf (data, build time, username,
hostname)

61 of 73

Identified issues (cont.)

Examples
File ordering

62 of 73

File ordering in python-support files

63 of 73

Identified issues (cont.)

Examples
Randomness

64 of 73

Random Python hash order

65 of 73

Identified issues (cont.)

Examples
Even more timestamps!

66 of 73

Timestamps in PNG
Even images!

67 of 73

Please help!

68 of 73

Please help!

• Do not record time, username, hostname, kernel version. . .
◦ . . . or make it optional.

• Sort file paths.
• Sort dictionary keys.
• If you work for a project where we propose patches, please help into
merging them!

69 of 73

Help?

• Inventory issues,
• Make packages build reproducibly,
• Fix known common issues:

◦ Get reproducible PE binaries,
◦ Random filenames with GCC (e.g. annobin),
◦ . . .

• Debian archive infrastructure
◦ Store and distribute *.buildinfo files,
◦ . . .

• Tools to display local packages reproducibility status (reprotest,
diffoscope, etc.).

70 of 73

Summer news

• NSA, CISA, ODNI released Securing the Software Supply
Chain: Recommended Practices Guide for Developers7

• The document expressly recommends having reproducible builds as
part of advanced recommended mitigations, along with hermetic
builds. Page 31 (page 35 in the PDF) says:

Reproducible builds provide additional protection and
validation against attempts to compromise build systems. They
ensure the binary products of each build system match: i.e., they
are built from the same source, regardless of variable metadata such
as the order of input files, timestamps, locales, and paths. (. . .)

7https://media.defense.gov/2022/Sep/01/2003068942/-1/-
1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF71 of 73

Stay in touch

• Website: https://reproducible-builds.org/,
• Mailing lists: rb-general@lists.reproducible-builds.org,
• Join #reproducible-builds or #debian-reproducible
(OFTC).

• https://reproducible-builds.org/events/venice2022/

72 of 73

Thank you for your attention.

Questions? Comments?

https://reproducible-builds.org/

77EE EF6D 0386 962A EA8C F84A 9B82 73F8 0AC2 19E6

9FA6 4B92 F95E 706B F28E 2CA6 4840 10B5 CDC5 76E2

73 of 73

https://reproducible-builds.org/

